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1.1 Classical Motivation

In classical complexity, non-deterministic polynomial time (NP) is a class of decision problems that can be
verified in polynomial time. Decision problems are problems where each language L is split into yes (1) and
no (0) answers L = (L1, L0).

Definition 1. A decision problem L = (L1, L0) ∈ NP iff there exists a deterministic verifier algorithm
V (x, y) such that

1. (Efficiently Verifiable) A runs in poly-time with respect to n = |x|.

2. (Completeness) If x ∈ L1, there exists a string y ∈ {0, 1}p(n) such that V (x, y) = 1.

3. (Soundness) If x ∈ L0, ∀y ∈ {0, 1}p(n), A(x, y) = 0.

Definition 2 (NP-Completeness). Any NP problem can be poly-time reduced to any NP-complete problem
(∃ a poly-time deterministic algorithm that maps all YES/NO instances of the original problem to the NP-
complete problem so that solving the complete problem solves the original problem, up to the difference of a
poly-time run-time factor).

Example 1 (NP-Complete Problems). The most famous such problem is 3-SAT (proved by Cook-Levin
Theorem). Other examples include Traveling-Sales-Person (TSP) and 0/1-Integer-Programming.
At this point there are tens of thousands of NP-complete problems that imply various applications.

1.2 Quantum Analogy of NP

QMA is defined by slackening the conditions for NP to allow probabilistic in the process.
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Definition 3 (QMA). A promise problem L = (L1, L0, L∗) is in QMA(b, a) iff there exists a uniform
family {Cn} of poly-size quantum circuits that take in two input registers, x ∈ {0, 1}n, and output a single
qubit:

1. (Completeness) If x ∈ L1 ∩ {0, 1}n, then ∃p(n)-qubit state |ψ⟩ s.t.

Pr[Cn(x, |ψ⟩) = 1] ≥ b.

2. (Soundness) If x ∈ L1 ∩ {0, 1}n, then ∀p(n)-qubit state |ψ⟩ s.t.

Pr[Cn(x, |ψ⟩) = 1] ≤ a.

Proposition 1. Generally, the class QMA is defined as QMA(2/3, 1/3), but we can prove that for b−a ≥
1/poly(n), QMA(b, a) = QMA(2/3, 1/3).

Proof. The proof is the same as the classical BPP amplification proof, which states that as long as there
is an inverse polynomial gap between the accepting and rejecting probabilities, one can always amplify the
probability to be equivalent to (2/3, 1/3).

One thing that was thought to also be different is that such a naive approach would actually increase the
witness-size by a factor of O(log(1/δ)) as well, which is not ideal. [MW05] came up with a surprising yet
beautiful approach that, instead, increases the run-time by a factor of O(log(1/δ)) and leaves the length of
the witness being p(n) qubits. ■

Remark 1. What is special about QMA compared to NP and BPP? The quantum power comes at the
properties that:

1. (Quantum Witness): The witness is a quantum state, |ψ⟩.

2. (Quantum Verifier): The verifier algorithm is a circuit that takes in two quantum registers and and
outputs a qubit.

We call the special case where we take out the first property and make the witness classical bit string the
QCMA class (“C” for classical). Then, we call the special case where we make the verifier algorithm
classical MA (this step cannot be done before the first special case, because as long as the witness is still
quantum it doesn’t make sense to run it by a classical verifier).

Proposition 2. By the chain of special cases in remark 1, it is easy to see that

NP ⊆MA ⊆ QCMA ⊆ QMA

Conjecture 1. It is conjectured that MA = NP and NP ⊊ QMA. In other words, it is believed that
“quantum proofs” can efficiently prove more than “classical proofs” can.

1.3 Open Problem

The following problem is in QMA, but it is unknown if it is QMA-complete and unknown if it is in NP.

Definition 4. The group non-membership problem. Consider a finite group G defined by its generator,
subgroup H ≤ G, and element g ∈ G. (L1) g /∈ H. (L0) g ∈ H. First of all, notice that it should be
easy to show that group membership problem is easily in NP. Now, consider this problem, the verifier is the
superposition of all states in H, and all you need to show that one of them is indeed g.
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2 QMA Complete Problems

2.1 Physics: The Hamiltonian

In a molecular/cluster system involving n electrons, the energy of these electrons is the sum of their kinetic
energy T̂ , their electric potential energy from atomic nuclei V̂ , and electron-electron repulsion energy Û .
The Hamiltonian for this system is

Ĥ = T̂ + V̂ + Û . (1)

In general, the Hamiltonian is the sum of all the energy operators of a system.

All observables Ô (position, momentum, energy, etc.) of a state |ψ⟩ are described by operators in quantum
mechanics. The observed value is given by the expectation value of the operator with the state

⟨ψ| Ô |ψ⟩ . (2)

When |λ⟩ is a normalized eigenvector of Ô with eigenvalue λ,

⟨λ| Ô |λ⟩ = λ. (3)

Since all observables are real-valued in the physical world, we constrain all eigenvalues of observables to be
real. This can be done by enforcing Ô to be Hermitian (Ô = Ô†, where † represents the conjugate transpose).
Another neat consequence of making observables Hermitian is that the eigenvectors of Ô : Cd → Cd span
the full rank d of the space Cd (see spectral theorem of Hermitian matrices). This extends to d→∞. More
specifically, we can diagonalize the Hamiltonian is

Ĥ =
∑
n

En |n⟩ ⟨n| , (4)

where |n⟩ are the eigenvectors of Ĥ with eigenvalue En. The energy of an arbitrary state can thus be written
as the following expectation value

⟨ψ| Ĥ |ψ⟩ = ⟨ψ|

(∑
n

En |n⟩ ⟨n|

)
|ψ⟩ (5)

=
∑
n

En ⟨ψ|n⟩ ⟨n|ψ⟩ (6)

=
∑
n

En|| ⟨ψ|n⟩ ||2. (7)

To maximize entropy per the second law of thermodynamics, at thermal equilibrium, a system distributes
its states according to the probability distribution

Pr(|ψ⟩ = |n⟩) ∝ exp

{
− En

kBT

}
, (8)

meaning the lowest-energy state E0, often called the ground state, has the highest probability of occurring.
If we cool the system such that T → 0, it is the only state that will exist.

In physics, we generally care about time-independent eigenstates, though knowing these states allows us to
determine the time-evolution of any arbitrary state. By Schrödinger’s equation,

Ĥ |ψ(t, x⃗)⟩ = iℏ
∂

∂t
|ψ(t, x⃗)⟩ . (9)
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the time-evolution of a system depends on the Hamiltonian. The Hamiltonian is generally has no explicit
time dependence (e.g. the electric potentials between two charged objects depends only on their position),
so it makes some sense to separate the state into time and position components.

ψ(t, x⃗) = ϕ(t)ψ(x⃗). (10)

Let |n(x⃗)⟩ be an eigenvector of Ĥ with corresponding eigenvalue E.

Ĥψ(t, x⃗) = Eϕn(t) |n(x⃗)⟩ . (11)

The letter E stands for energy. Plugging this into Schrödinger’s equation gives

iℏ
∂

∂t
ϕn(t) |n(x⃗)⟩ = Eϕn(t) |n(x⃗)⟩ (12)

ϕn(t) = exp

{
−iE

ℏ
t

}
. (13)

Thus, the time-evolution of the eigenstate is described as a simple oscillatory function. At any moment
in time t = T , any arbitrary state |Ψ(t = T, x⃗)⟩ can be represented as a sum of the eigenstates of the
Hamiltonian as the eigenvectors span the full rank. If at t = 0,

|Ψ(0, x⃗)⟩ =
∑
n

αn |n(x⃗)⟩ (14)

for arbitrary weights αn, the time-evolved state is just

|Ψ(t, x⃗)⟩ =
∑
n

αnϕn(t) |n(x⃗)⟩ (15)

=
∑
n

αn exp

{
−iEn

ℏ
t

}
|n(x⃗)⟩ . (16)

2.1.1 The Classical-Ising Model

Minimization of Hamiltonians can be used to solve classical problems.

Let G = (V,E) be a graph with n verticies in set V and pairs of verticies in the set E of edges. Define Zi

to be the Pauli z-matrix acting on qubit i. Then, the Max-Cut Hamiltonian is

Ĥ =
∑

e=(u,v)∈E

Zu ⊗ Zv (17)

=
∑

(u,v)∈E

|00⟩ ⟨00|u,v − |01⟩ ⟨01|u,v − |10⟩ ⟨10|u,v + |11⟩ ⟨11|u,v (18)

=
∑

x∈{0,1}n

(m− 2c(x)) |x⟩ ⟨x| , (19)

where c(x) is the number of satisfied constraints (number of edges that will be cut) and m = |E|.

This is similar to the real-world quantum Heisenburg model subject to a transverse magnetic field on the
x-axis. For some number of qubits arranged in a ring, the Hamiltonian for this model is

H(Jx, Jy, Jz, g) = Jx
∑
i

Xi ⊗Xi+1 + Jy
∑
i

Yi ⊗ Yi+1 + Jz
∑
i

Zi ⊗ Zi+1 + g
∑
i

Xi, (20)

where Jx, Jy, g = 0 gives the Max-Cut problem Hamiltonian and Jx = Jy = Jz, g = 0 gives something
called the quantum Max-Cut problem. Minimizing the 2D extension to the Heisenburg Hamiltonian is
QMA-complete.
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2.2 The Local Hamiltonian Problem

Definition 5. A k-local n-qubit Hamiltonian Ĥ acts trivially on only k ≤ n qubits. In other words, the
(2n × 2n)-dimensional Ĥ can be fully described as the tensor product of a (2k × 2k)-dimensional tensor and
identity for the other n− k qubits.

Definition 6. The k-local Hamiltonian problem for a n-qubit Hamiltonian is a promise problem where (i)
the Hamiltonian satisfies

Ĥ =

m∑
i=1

Ĥi, (21)

where each Ĥi are k
′-local where k′ ≤ k and 0 ≼ Ĥi ≼ Î2n , and (ii) given a, b ∈ [0,m] with b− a ≥ poly(n),

decide whether the minimum eigenvalue λ0 of Ĥ is ≤ a or ≥ b promised it is in one of the two categories.

• The accepted languages L1 are the set of Hamiltonians where λ0 ≤ a.

• The rejected are those with λ0 ≥ b, and we are promised we do not get L∗, where a < λ0 < b.

In general, Ĥi may satisfy the condition 0 ≼ Ĥ ≼ Î2n . However, we can always normalize Ĥ such that
the −I2n ≼ Ĥi ≼ I2n . Then, we can define a new positive-semidefinite Hamiltonian Ĥ ′

i = (Ĥ + I2n)/2

that satisfies 0 ≼ Ĥ ′
i ≼ I2n . Under this transformation, the eigenvalue λ′0 of Ĥ ′ =

∑m
i=1 Ĥ

′
i is given by

λ′0 = (λ0 +m)/2.

Theorem 1. There is a version of the k-local Hamiltonian problem that is QMA-complete.

Proof. It is easy to verify that the k-local Hamiltonian problem is in QMA. To show completeness, for
a promise problem L in QMA, we can construct a map from all instances x ∈ L to a Feynman-Kitaev
Hamiltonian. For a given verifier circuit Cn, the input is the n-qubit string x, the s-qubit ancilla, and the
w(n) ≤ poly(n) verifier. An additional T +1 ≤ poly(n) time-keeping states are added for each gate {Ut}Tt=1

where Cn = UT · · ·U1.

At the initial state, a penalty Hamiltonian

Ĥinit =

s∑
i=1

|1⟩ ⟨1|A,i ⊗ |0⟩ ⟨0|C (22)

checks to make sure the ancilla (denoted A) is initialized to zero and the proper input x (denoted X) is
given. The clock (denoted C) state is |t = 0⟩.

Then, an additional T Hamiltonians (t ∈ {1, · · · , T}) assign penalties for deviating from the circuit

Ĥt =
1

2
(I ⊗ (|t− 1⟩ ⟨t− 1|C + |t⟩ ⟨t|C)− Ut ⊗ |t⟩ ⟨t− 1|C − U

∗
t ⊗ |t− 1⟩ ⟨t|C) . (23)

Finally, a penalty is assigned for a 0-measurement in the output (treat a 1-measurement as accepting)

Ĥfin = |0⟩ ⟨0|1 ⊗ |T ⟩ ⟨T |C . (24)

The total Feynman-Kitaev (penalty) Hamiltonian is just

Ĥ = Ĥinit +

T∑
t=1

Ĥt + Ĥfin. (25)

Completeness and soundness can be shown for this Hamiltonian with well-defined a and b. Furthermore, as
each quantum gate acts on at most 2 qubits and the clock register uses ⌈log(T + 1)⌉ bits, we have k-locality
where k = ⌈log(T + 1)⌉+ 2 = O(log(n)). This can be further reduced to a constant. [dW23] ■
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2.3 Additional QMA-Complete Problems

Definition 7. The non-identity check problem. Given an n-qubit polynomial circuit C, determine whether
this circuit is non-trivial up to a phase. (L1) For all ϕ ∈ [0, 2π), ||C − eiϕI2n || ≥ b. (L0) There is some
ϕ ∈ [0, 2π) such that ||C − eiϕI2n || ≤ a. (Promise) Either L1 or L0 is the case and b− a ≥ 1/poly(n).

Definition 8. The k-local matrix consistency problem. Consider m ≤ poly(n) density matrices {ρi}mi=1,
where ρi depends only on the set of qubits Qi with |Qi| ≤ k. Denote Q = {1, · · · , n} as the set of all
qubits. (L1) There is a consistent n-qubit density matrix ρ, meaning for all i ∈ {1, · · · ,m}, the partial
trace trQ\Qi

(ρ) = ρi. (L0) All matrices ρ have a significant non-consistency, meaning there exists some
i ∈ {1, · · · ,m} such that |tr(trQ\Qi

(ρ)− ρi)| ≥ b. (Promise) Either L1 or L0 is the case and b ≥ 1/poly(n).
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Beyond MA & QMA

This part of the talk is somewhat more advanced that involves the ideas of QMA that we have just intro-
duced. This talk was inspired by Tina Zhang, who gave a great talk on this topic at QuACC a few Fridays
ago on “compiled nonlocal games with applications in cryptography.” We introduce some of the critical
concepts here. We go through the following chain of generalizations:

MA
QMA

→MA(i)
QMA(i)

→ IP
QIP
→MIP→MIP∗.

1 MA
QMA

→MA(i)
QMA(i)

The reason why QMA is a quantum analogue of NP is really due to the fact that it is a quantum analogue
of MA. Compare the following two definitions:

• (L ∈ NP) “x ∈ L ⇐⇒ ∃y, such that V (x, y) = 1 where V runs in poly-time.”

• (L ∈MA) “x ∈ L =⇒ ∃y, such that Pr
z

[V (x, y, z) = 1] ≥ 2
3 where V runs in poly-time (clearly we

also need the x /∈ L case).”

Remark 2. Notice that MA is only different from NP in that it allows probabilistic power. This should
explain why the conjecture 1 formulates that MA = NP just like how it is conjectured that P = BPP.

In fact, this probabilistic power could be derandomized with additional power, due to the following theorem:

Theorem 2. We know that MA has a probabilistic Verifier, so are AM[k] for different constant values
of k. However, it is actually the case that, given any of these, we can construct an equivalent protocol with
Verifier making deterministic decisions.

Proof. We start with MA as it is essentially the base case. Suppose the specific MA protocol that decides
for a language L. Let n be the input size, and l = |r| which is the random coin flip size (which should be
poly(n)). Thus, by definition,

• If x /∈ L, then ∀m ∈ {0, 1}p(n),Pr
r

[V (x,m, r) = 1] ≤ 1
4l .

• If x ∈ L, then ∃m ∈ {0, 1}p(n),Pr
r

[V (x,m, r) = 1] ≥ 1− 1
4l .

Given x and some m, denote the set of coin flips, r, that make V (x,m, r) evaluate to 1 as Sm
x . We can show

that, with a specific kind of amplification (through permutation by ⊕ [XOR]), there are the following case:

• (If x /∈ L) ∀ set of permutations, none would cover the entire {0, 1}l, meaning it can find something to
reject, perfectly. Specifically, what we want to show is:

|Sm
x | ≤

1

4l
2l =⇒ ∀z1, . . . , zl,

l⋃
i=1

Sm
x ⊕ zi ⊊ {0, 1}l.

Proof. Observe that ∣∣∣∣∣
l⋃

i=1

Sm
x ⊕ zi

∣∣∣∣∣ union bnd
≤

l∑
i=1

(Sm
x ⊕ zi) ≤

l∑
i=1

(Sm
x ) ,

because XOR can be seen as shifting the original set, so it could at most keep the size of the original
set the same (if part of the original set got shifted outside of the entire domain, it may decrease the
original set size). ∣∣∣∣∣

l⋃
i=1

Sm
x ⊕ zi

∣∣∣∣∣ ≤
l∑

i=1

(Sm
x ) ≤ l · |Sm

x | ≤ l
1

4l
2l =

2l

4
< 2l.

■
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• (If x ∈ L) We show that there exists some shift that V can accept with perfect completeness, i.e.

|Sm
x | ≥

(
1− 1

4l

)
2l =⇒ ∃z1, . . . , zl,

l⋃
i=1

Sm
x ⊕ zi = {0, 1}l.

Proof. Observe that, fixing any y ∈ {0, 1}l,

Pr
z1,...,zl

[
y /∈

l⋃
i=1

Sm
x ⊕ zi

]
≤Pr

z1
[y /∈ Sm

x ⊕ z1] · · · Pr
zl

[y /∈ Sm
x ⊕ zl] =

l∏
i=1

Pr
zi

[y /∈ Sm
x ⊕ zi],

but shifting by zi to not include y is the same as shifting by y to not include zi, so

Pr
z1,...,zl

[
y /∈

l⋃
i=1

Sm
x ⊕ zi

]
≤

l∏
i=1

Pr
zi

[y /∈ Sm
x ⊕ zi] =

l∏
i=1

Pr
zi

[zi /∈ Sm
x ⊕ y] ≤

(
1

4l

)l

.

Now, the probability such that such a y exists to not be contained in such a shift is:

Pr
z1,...,zm

[
∃y, y /∈

l⋃
i=1

Sx ⊕ zi

]
≤ 2l ·

(
1

4l

)l

,

which means that, to get the probability that all y would be covered is to take the complement of this,
and that would give a probability of

1− 2l

(4l)l
> 0 =⇒ such z1, . . . , zm exist by probabilistic method.

■

But this is it, as we can reformulate the accepting and rejecting conditions in the ΣP
2 ∩ΠP

2 forms:

• x /∈ L ⇐⇒ ∀m ∈ {0, 1}p(n), z1, . . . , zl,∃y ∈ {0, 1}l s.t. V (m, z1, . . . , zl, y) = 1 (which happens exactly

when y /∈
l
∪
i=1
Sm
x ⊕ zi).

• x ∈ L ⇐⇒ ∃m ∈ {0, 1}p(n), z1, . . . , zl,∀y ∈ {0, 1}l s.t. V (m, z1, . . . , zl, y) = 1 (which happens exactly

when y ∈
l
∪
i=1
Sm
x ⊕ zi = {0, 1}l).

New protocol with completeness (so it must accept all x ∈ L):

1. Prover finds the m and z1, . . . , zl and sent to Verifier.

2. Verifier uniformly randomly choose y and check if V (m, z1, . . . , zl, y) = 1. If so, accept; reject,
otherwise (notice that, though it can still accept x /∈ L case which we will need to deal with using the
soundedness protocol instead [which also rejects perfectly], the Verifier is capable of accepting every
instance of x ∈ L perfectly).

■

Remark 3. Again, QMA and MA are only different, literally, in that QMA takes a witness as a p(n)-qubit
state and its verifier can be a quantum circuit.

2 MA(i)
QMA(i)

→ IP
QIP

To get a sense of the full power of IP, let’s first introduce the polynomial hierarchy.
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2.1 Polynomial Hierarchy

Notice that NP language can be characterized by a single existential statement (described as the existence
of a poly-size witness). It turns out this can be a lot more generalized to be the following two kinds of
classes:

• (L ∈ Πp
i ) x ∈ L ⇐⇒ ∀y1,∃y2, . . .∃/∀yi, V (x, y1, y2, . . . , yi) = 1.

• (L ∈ Σp
i ) x ∈ L ⇐⇒ ∃y1,∀y2, . . .∀/∃yi, V (x, y1, y2, . . . , yi) = 1.

This generalization will fill up the entire polynomial hierarchy, denoted PH, which looks like:

Definition 9 (Totally Quantifiable Boolean Function (TQBF)). This problem should capture the form of
each specific instance of PH, as it has the following form:

Q1x1, Q2x2, . . . , Qnxn, ϕ(x1, . . . , xn),

where each Qi and Qi+1 are alternating between ∃ and ∀, starting from either ∃ or ∀. ϕ is a Boolean formula
with x1, . . . , xn as variables. The goal is to decide if ϕ(x1, . . . , xn) is satisfiable.

Proposition 3. Any Πp
i and Σp

i can be reduced to TQBF. This implies that PH ⊆ PSPACE (it is not
presently known if the equality holds).

Proposition 4. TQBF is PSPACE-complete.

2.2 Interactive Proof System (IP)

Definition 10 (MA(i)). Notice that what MA really did is a protocol that captures the probabilistic version
of a Πp

1 problem. So, we can easily generalize that to a bigger i, by letting there be multiple rounds of
communications between Merlin (the all-powerful prover) and Arthur (the computationally limited verifier).
That generalization, is what we call MA(i).

Definition 11 (IP). Is the union of all MA(poly(n)), plus it can be both directions (i.e. both the prover
and the verifier can be the one to start the first talk).

Prover
(Merlin)

· · · Verifier
(Arthur)

Remark 4 ([GS86]). This is not exactly true. Because the first motivation for IP to be introduced is the
following:

• Consider the protocol for Graph-Non-Isomorphism. Suppose the input is G0, G1 such that they are
not isomorphic to each other and the Prover is to convince the Verifier that they are not isomorphic:
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– Verifier picks an b ∈ {0, 1}.
– Verifier randomly permutes Gb and send to Prover.

– Prover is supposed to find the b and send b back.

The completeness and soundedness are both easy to check: because Verifier is all powerful, so, as
long as G0 ̸∼= G1, there is only one Gb that the permuted graph could be isomorphic to and so Verifier
can always find it; but when G0

∼= G1, the best Verifier could do is to guess uniform randomly what
b is.

• Notice that the reason why this could be done is because b, the random coin flip of the Verifier
is hidden from the Prover. In fact, this is the key difference between AM[k] and IP[k], which is
that AM is said to be the public-coin interactive proof system, and IP is said to be the private-coin
interactive proof system.

• As it turned out, they are equivalent in order of magnitude, specifically due to the following theorems:

– AM[k] ⊆ IP[k], trivially.

– IP[k] ⊆ AM[k + 2].

– PSPACE = IP[poly(n)] = MA[poly(n)].

Theorem 3. Due to the strongly correlated nature of PSPACE and IP rooted from the motivation of their
definitions, there should be at least some intuitions at this point that the following is true:

IP = PSPACE [Sha92].

Definition 12 (QIP). We give IP the additional power:

• The verifier can be a BQP verifier.

• The messages sent can be quantum.

Theorem 4. It was actually shown that, at this point, quantum doesn’t give any extra power (which makes
the next result all the more surprising):

IP = PSPACE = QIP [JJUW11].

3 IP
QIP
→MIP→MIP∗

Definition 13. The same as IP except that there can now be multiple provers:

Prover 1
(Merlin 1)

· · ·

Verifier
(Arthur)

· ·
·

Prover 2
(Merlin 2)

Definition 14 (MIP∗). The same as MIP except that there can be quantum entanglements between provers:

Prover 1
(Merlin 1)

· · ·

Verifier
(Arthur)

· ·
·

Prover 2
(Merlin 2)

entangled
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4 Summary
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Cryptography

1 Motivation

• Algorithm: Try to prove something is easy.

• Complexity: Try to prove something is hard. For this, one of my personal favorites:

“Go to the roots of calculations! Group the operations. Classify them according to their
complexities rather than their appearances! This, I believe, is the mission of future mathe-
maticians.” — Evariste Galois

• Cryptography: Try to prove things are hard based on assumptions (which we call cryptographic prim-
itives). Impagliazzo’s five worlds:

– Algorithmica: P = NP.

– Heuristica: P ̸= NP but NP is easy on average.

– Pessiland: NP is hard on average but OWFs don’t exist.

– Minicrypt: OWF exists but public key encryptions don’t exist (PKE is also known as the asym-
metric encryption).

– Cryptomania: PKE exists.

– (Obfustopia: Indistinguishability Obfuscator (iO) exists.)

In particular, there are two fairly recent extensions of classical cryptography to quantum cryptography that
I want to talk about.

2 Zero-Knowledge Proofs

2.1 Traditional Proofs

Here is an example, a traditional proof with A and A =⇒ B as axioms, then B can be proved in the
following steps:

• A (axiom).

• A =⇒ B (axiom).

• B (rule of inference).

For a Prover to convince a Verifier is for Prover to come up with a proof that can be efficiently
written down in PSPACE and efficiently checked for correctness in P. By what we said in the IP notes, if
Verifier is deterministic, the class of proofs that Verifier can be convinced this way is NP. Then, IP is
when Verifier has probabilistic power and the coin flips are private to the Verifier.

Proposition 5 (Power Gap). There’s no traditional proof for Graph-Non-Isomorphism but there is an
IP for it (as the problem is in PSPACE which is equivalent to IP).

Proposition 6 (Traditional proofs leave no room for privacy!). Think about this: If Prover is able to
prove Verifier with a series of axioms and rules, then now Verifier can turn around and convince some
third-party Verifier2 by doing the same thing. That means, Verifier now has additional power that it
used to not have before seeing the full proof!

Example 2 (Traditional Proof for Graph-Isomorphism). Prover shows Verifier the permutation.
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Example 3 (IP for Graph-Isomorphism [?]). Set-up: both Prover and Verifier know a pair of graphs
(G0, G1) and Prover knows permutation ϕ such that ϕ(G0) = G. The point is Prover can convince
Verifier without showing the Verifier what the permutation is.

1. Prover randomly generates a permutation π and computes C = π(G1) and sends C to Verifier.

2. Verifier randomly picks a bit b and sends b to Prover.

3. If b = 0, then Prover sends σ = π ◦ ϕ to Verifier (so σ(G0) = π(G1) = C). Or, if b = 1, then
Prover sends σ = π to Verifier (so σ(G1) = C). That is, Verifier must pick the right σ to put
through for σ(Gb) = C.

4. Finally, Verifier accepts iff σ(Gb) = C.

Keynote: Note that π is picked uniformly randomly, so it conveys no additional information. Then, all
Verifier has ever seen is π ◦ ϕ, so it also won’t be able to gain additional information about ϕ. Next, we
formulate and quantify exactly what this difference is (i.e. the privacy preserving power of IP which is extra
to Traditional-Proof systems).

2.2 The Notion of ZK

2.2.1 Background

Asymmetry:

Asymmetry is a concept embedded into the definition of ZK, and all it means is that the ZK privacy
requirement concerns only with the positive case, i.e. where a proof (as in contrast with a disproof) is
demanded. Here is why this is natural to consider:

• Think about example 3, we only specify what to do if G0
∼= G1 is indeed true, in which case Prover

does need to convince Verifier. In a sense, one should think that there is only a job to do when
the Prover does need to convince the Verifier and the privacy requirement is about leaking no
information when Prover is doing this job for Verifier.

• On the other hand, when G0 ̸∼= G1 a trivial thing to do is just for Prover to abort, so that, again, all
that Verifier still learns nothing about the proof other than that the isomorphism may be false. This
is another way to look at why ZK about the negative case in this scenario isn’t important to specify.

Knowledge Act:

What is knowledge? Or, at least, what we consider as knowledge when we say we want to leak no knowledge?

Definition 15 (Knowledge Act). The following come for free and do not count as knowledge:

• Randomness.

• Computation that can be done in poly-time.

In summary, anything that can be computed by a PPT is free in terms of knowledge; otherwise, it is not free.

Remark 5 (Information vs. Knowledge). Here is a good place to differentiate between information and
knowledge. For example, a random bit string contains a lot of information, but it nonetheless contains no
knowledge.
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2.2.2 Interactively Defining ZK

How to View ZK in IP?

Definition 16 ((P, V )[x]). Let (P, V )[x] denotes the set of all possible sequences of messages sent by the
Prover, P , in the current IP system. *Note: Why only what P sent? This is because V is capable of what
it sends, so only what P sends can possibly count towards knowledge.

Definition 17 (VIEWP,V [x], Informal, Bad, Just For Now). VIEWP,V [x], the set of a sequence of interactions
between P and V , can be seen as a distribution over (P, V )[x].

Proposition 7. ZK for an IP system (P, V )[x] ⇐⇒ VIEWP,V [x] can easily be generated by V ⇐⇒
VIEWP,V [x] can easily be generated by PPT.

Subconscious / Simulator:

To show that the IP we had forGraph-Isomorphism was indeed ZK, we show that theVerifier can single-
handedly simulate the conversations generated by (P, V )[G0, G1]. In this case, we say that the Verifier is
in the subconscious state:

Definition 18 (SPPT,Verifier in the subconscious state). SPPT is Verifier when Prover is “killed” and
the Verifier is single-handedly trying to construct the conversation it would have had with the Prover
with its PPT power.

Definition 19 (Original Conversation vs. Simulated Conversation). We call the conversation that V and
P would have had the “original conversation” and the conversation that V simulates single-handedly the
“simulated conversation.”

Example 4. A simulated conversation for Graph-Isomorphism:

• Verifier randomly chooses a permutation π.

• Verifier randomly chooses a permutation b ∈ {0, 1}.

• Then, Verifier defines C = π(Gb).

It is clear that, if we assume G0
∼= G1, then C should be isomorphic to both of them.

Remark 6. Note the following about example 4:

• The conversation simulated and the original conversation are exactly the same other than the order
(which doesn’t matter because the two randomness are used independently). The idea is that ϕ is
intrinsic to G0 and G1, so we don’t need the ϕ that is the morph between the two graphs in order to
generate the conversation.

• One gap is that, in the simulated conversation, π is chosen randomly, but π in the original conversation
may be chosen with some other distribution (such as lexicographically the first one). So, we can just
update the protocol and let the Prover also choose π randomly.

Remark 7. Though example 4 is a one-round IP system, but this is not necessarily the case, as we could
as well generalize this process to k-round.

Proposition 8. In this case, where the simulated conversation and the original conversation are practically
the same, we say that they are indistinguishable (though how indistinguishable they are needs to be formally
defined and will lead to different kinds of ZK proof [computational, statistical, information-theoretic]).

First Attempt of Formal Definition of ZK Property:

14



Definition 20 (ZK property, First Attempt). An IP system that decides L, denoted (P, V )[x],∀x ∈ L is
said to have ZK property if ∃SPPT s.t. ∀x ∈ L, VIEWP,V [x] = SPPT[x].

Second Attempt of Formal Definition of ZK Property:

The problem of the previous definition 20 is that it doesn’t concern the possibility of V being dishonest.
That is, all that it asks for is just that the indistinguishability result applies to only one specific verifier V .
What we could do instead is asking that this indistinguishability holds for all V :

Definition 21 (ZK property). An IP system that decides L, denoted (P, V )[x],∀x ∈ L is said to have ZK
property if ∀V ′,∃SPPT s.t. ∀x ∈ L, VIEWP,V ′ [x] = SPPT[x].

Remark 8. Notice that in this definition we have two different Verifiers, one is the abstract V that defines
the set of all conversations that the IP protocol would be able to generate, and the other is the specific V ′

that has a view and is able to generate the entire conversation single-handedly.

Remark 9. Notice how the ZK property is yet another asymmetric requirement that resembles soundedness.
While soundedness requires that no dishonest Prover could inadvertently convince the Verifier of some-
thing that is not supposed to be true. Analogously, the ZK property is to ensure that no dishonest Verifier
could learn more than zero-knowledge from any possible conversation.

Remark 10. The second version of the ZK property as given in definition 21 can be achieved. In fact, it
can often be achieved by just some IP that satisfies the first definition 20.

2.3 Proving That an IP System Satisfies ZK Property

2.3.1 What Does an IP System with ZK Property Look like?

Remark 11. Because the Verifier needs to have enough power to simulate the messages that Prover
sends it, so it must be the case that all the messages that Prover sends must be PPT computable based on
what Verifier knows.

2.3.2 Black-Box Simulation

In our section definition 21, we formulated it such that ZK property should hold for general verifiers, V ′. So,
in our security analysis, the internal workings of V ′ shouldn’t matter too much, which is why we introduce
the black-box simulation version of the definition:

Definition 22. We let SPPT only have black-box access to V ′ instead (so basically V ′ acts as an oracle).
Then, the definition, similarly to definition 21, is

∃SPPT,∀V ′,∀x ∈ L,VIEWP,V ′ [x] = SV ′
[x].

Remark 12. Definition 22 is actually a stronger definition than 21, because it is possible for SPPT to know
the internal working of V ′, whereas, in this version of the definition, SPPT has no information about V ′ other
than its I/O. Furthermore, this ∀SPPT comes before V , which means that this single simulator works against
all Verifiers.

Remark 13. For a typical definition of ZK property, definition 21 suffices and is standard. Definition 22
is for the purpose of showing that IP system is has ZK property.

So, here is a quick summary of what we have so far:

• A zero-knowledge proof system (ZKPS) for L is one such that all of the following are satisfied:

– (Completeness) If x ∈ L, Pr[(P, V )[x] = 1] ≥ 1− neg.
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– (Soundedness) If x /∈ L, Pr[(P, V )[x] = 1] ≤ 1
2 .

– (Zero Knowledge) ∀V ′,∃SPPT,∀x ∈ L,VIEWP,V ′ [x] = SPPT[x].

• A stronger zero-knowledge proof system (ZKPS) for L, which we use to prove IP has zero-knowledge
property, is one such that all of the following are satisfied:

– (Completeness) If x ∈ L, Pr[(P, V )[x] = 1] ≥ 1− neg.

– (Soundedness) If x /∈ L, Pr[(P, V )[x] = 1] ≤ 1
2 .

– (Zero Knowledge) ∃SPPT,∀V ′,∀x ∈ L,VIEWP,V ′ [x] = SV ′

PPT[x].

2.3.3 Example: How Does SPPT Produce a Conversation Indistinguishable from VIEWP,V ′ with
only oracle access to V ′

The idea is that SPPT keeps trying until V ′ outputs something that signals it that it is the conversation that
V ′ would have induced. This way, the same single SPPT could simulate any V ′. Here are the steps:

1. SPPT randomly chooses bi ∈ {0, 1} and permutation πi during the i-th round. Then, Ci = πi(Gbi).

2. SPPT sends Ci to V
′, and V ′ outputs di.

3. SPPT keeps the i-th round if bi = di; keeps going without keeping it if not.

∗After finishing to enumerate every possible guesses, SPPT should be able to indistinguishably construct a
k-round IP conversation.

2.3.4 Some Nuances

Remark 14. Here is a problem: Since we are requerying V ′ many times, so every time we query V ′ it can
set V ′ in a different state. But, we won’t know anything about it though, since we know nothing about the
inner workings of the oracle, nor can we reset its states.

Definition 23 (Rewinding). There are three types of rewinding:

• (Code) SPPT has a copy of V ′’s code, then SPPT can simply restart the code.

• (Black Box) SPPT cannot see the inner workings of V ′ but have access to its random tape, then it can
restart the TM.

• (Clones) If SPPT has access to absolutely nothing of V ′ but its I/O, it can try to clone several copies
of V ′.

Corresponding to different types of access, we have the following ZKPS settings:

• (Full Power) ∀V ′,∃SPPT, SPPT[x] = VIEWP,V ′ [x]. SPPT works non-uniformly based on which V ′ it’s
dealing with.

• (Code Power) ∃SPPT,∀V ′,∀x ∈ L, SPPT(code(V
′), x) = VIEWP,V ′ [x]. That is, a single SPPT is powerful

enough to simulate a ZKPS when it has access to V ′’s code.

• (Black Box Power) ∃SPPT,∀V ′,∀x ∈ L, SV ′

PPT[x] = VIEWP,V ′ [x]. That is, a single simulator is powerful
enough to simulate any V ′, even when it doesn’t know V ′’s inner workings.

Remark 15. The above definitions are all listed in the order from the least restricted to the most in terms
of what SPPT has access to (the most restricted model would be a B.B. and the common definition for ZKPS
following how it is naturally intended uses full power; the less restricted the weaker the definition).

Remark 16. What if V ′ is intrinsically random? That is, what if, with the same input, V ′ still outputs
different things? Then the B.B. model would not work.
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2.4 But In Quantum?

There are several key differences in quantum that we must consider as compared to the classical case:

• Bad:

– Some classically hard problems are broken: such as factoring by Shor’s and certain lattice problems
in the last decade. So, in a sense, the same cryptographic primitives in the classial world are harder
to achieve in the quantum world.

– Classical security analysis would fail, as there are additional quantum attacks available, and the
quantum adversaries are hard to analyze (as one can see from the paper I linked and the future
talk Francesco will give).

• Good:

– Quantum protocols outperform classical protocols. For example, we know that quantum key
distribution is information theoretically secure which is something known to be unattainable for
classical key distribution.

– There are additional crypto tools for quantum tasks: Encrypt quantum data.

2.5 Here is a Summary of Chain of Results Generalizing from Classical ZK
Proof Systems to Quantum ZK Proof Systems

2.5.1 NP→ QMA

Theorem 5 ([GMW91]). Every problem in NP has ZK proof system.

What are the gaps to extend this to quantum?

• Rewinding techniques fail entirely in quantum, until new techniques were found by Wastrous [Wat06].
This new technique will make the protocol in [GMW91] still quantum-secure. However, this only
applies to restricted cases.

• Quantum ZK were understood up to statistical, but [GMW91] concerns computational.

Proof (Overview). The idea is to reduce ZK for QMA to a problem that we know how to solve, which is
ZK for NP. Firstly, we look at how to reduce from ZK for NP to ZK for NP through homomorphic
encryption and fix the gap between NP and QMA in this process.

Definition 24 (Homomorphic Encryption). Here’s the set-up: let (pk, sk) ← Gen(1λ), ct ← Enc(pk,m; r),
and m = Dec(sk, ct). HE is when the following are satisfied:

• (Secrecy): Let m,m′ be two messages, ct ← Enc(pk,m; r) and ct′ ← Enc(pk,m′; r) should be indistin-
guishable.

m

Enc(pk,m; r) ≈ϵ Enc(pk,m
′; r)

m′

• (Homomorphic) Similar to the homomorphic property in algebra and the functionality focuses on its
verifiability.

m

Enc(pk,m; r)

Enc(pk,m; r)

f(m)

Dec(sk, f̂ [Enc(pk,m; r)])

f̂ [Enc(pk,m; r)]

f

f̂
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With HE available, the idea is to have Verifier homomorphically evaluates Verification circuit on encrypted
witnesses, just like the classical case, with the following gap dealt with in [BJSW16]:

• Need the right tools in quantum setting, like encoding by qubits.

• Need authentication to protect against dishonest Verifier with quantum power.
■

Corollary 1. With this result that aligns QMA with NP in terms of ZK, notice that QIP is a generalization
of QMA and IP a generalization of NP. Also, notice that PSPACE = IP = QIP, a lot of what one can
say about IP being a ZK proof system can be similarly said about QIP.

3 Non-Local Games → Compiled Games

3.1 Review

These are all from chapter 6 of our main source. In particular, reviewing 6.2 quantum correlations, 6.3 the
CHSH Inequality, and 6.4 Bell’s Theorem via CHSH would be helpful!

Definition 25 (Nonlocal). Recall the locality requirement we have seen:

Alice’s choice of measurements (choosing between A1 and A2) does not affect the outcomes of
Bob’s measurement, and vice versa.

Proposition 9. To classically test 2 quantum devices nonlocally, we use a Bell test like the CHSH game
[it is known this this techniques can be extended to verify all BQP, by works in the last decade].

Nonlocal correlations are “classical leash” on quantum systems.

3.2 Current Landscape about This?

Here comes the big question of compiled games: how do we classically test 1 quantum device? We simulate
locality using cryptography, in particular, a classical leash on a computationally bounded quantum device
using the Learning-With-Error problem [BCM+21, Mah18].
Here is a line of current works:

• MIP∗ model is shown to be able to win certain “nonlocal games” (two or more players (Provers)
who are only allowed to communicate with the 1 referee (Verifier)) [Bel64].

• Through a later line of research, this set-up where noncommunicating provers of the MIP model are
allowed to share quantum entanglement has become one of the best understood omodels in quantum
complexity theory (in the last 20 years).

• [KLVY23] very recently proposed the following transformation from multi-provers to a single prover,
roughly:

A
x

a
V

y

b
B

=⇒ V
Enc(pk1, x; r1)

Enc(pk1, a; r2)

Enc(pk2, y; r3)

Enc(pk2, b; r4) P
and showed that several CHSH Game properties were preserved.

• [NZ23] Better the analysis and showed more quantum properties.
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