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Chapter 7: Stabilizers (Ctd.)

1 Normal Subgroups

Definition 1 (Normal Subgroup). Let H ≤ G be groups. H ⊴ G (said H is a
normal subgroup of G) if H is invariant under conjugation by all elements of G, i.e.
ghg−1 ∈ H,∀g ∈ G, h ∈ H.

Definition 2 (Left Cosets (right is defined analogously)). A left coset of H is gH =
{gh : h ∈ H} for some fixed g ∈ G.

Proposition 1. Let g1, g2 ∈ G. Then, g1H and g2H are either identical or disjoint.

Proof. Proof is given in algebra I, and can be quite a tedious one. The idea is, suppose
g1H and g2H are not disjoint, say they share some common elements, then you can
show that it will lead to the two being identical. ■

Proposition 2. If H ⊴ G also, then gH = Hg.

Proof. Normal subgroup means ghg−1 ∈ H∀h ∈ H, g ∈ G, then gHg−1 ⊆ H =⇒
(gHg−1) g ⊆ Hg =⇒ gH ⊆ Hg . On the other hand, g−1hg ∈ H, because g−1 ∈ G,

so h ∈ gHg−1 =⇒ H ⊆ gHg−1 =⇒ Hg ⊆ gH . By two-way containments, we have
gH = Hg, indeed. ■

Definition 3 (Quotient Groups). With proposition 2, we can define the quotient group
G/H, which consists of cosets with the operation defined by

g1H · g2H = (g1g2)H

[due to left and right cosets’ equality].
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Theorem 1 (Lagrange’s Theorem). Let H ≤ G, and denote the number of cosets of
G given by H by |G : H|, we have

|G| = |G : H| · |H|.

Proposition 3. Given an arbitrary subgroup H ≤ G, we can construct a larger sub-
group K ≤ G in which H is normal, i.e.

H ⊴ K ≤ G.

Definition 4 (Normalizer). As pointed out in 3, normal supergroups, K, exist between
H and G. The largest such K in G is called the normalizer and is denoted

NG(H).

Proposition 4. It is NOT TRUE that H ⊴ K,K ⊴ G =⇒ H ⊴ G.

2 Pauli Normalizers

As we will see next, Pauli stabilizers are not normal subgroups of Pn, so we instead
study their normalizers. Firstly, let’s see that, after choosing a stabilizer S, there are
two subgroups of Pn that pop up:

Definition 5 (Centralizer). The centralizer is the set of all elements in Pn that com-
mutes with every element of S:

ZG(S) = {g ∈ Pn : gsg−1 = s,∀s ∈ S}

Notice how this is similar to the normalizer but more rigid (though generally distinct):

NG(S) = {g ∈ Pn : sgs−1 ∈ S,∀s ∈ S}

Proposition 5. In the context of Pauli groups, ZG(S) = NG(S).

Proof. Notice that, by the definition of NG(S) (gsg−1 = s′), it becomes ZG(S) only
when s′ = s for all s ∈ S as well. But, any two elements of the Pauli group either
commute (same or with 1) or anticommute (otherwise), so s′ = s or s′ = −s. But, if
s ∈ S, it is a stabilizer, so it cannot be the case that s′ = −s (exercise to show). So,
s′ = s, which means that ZG(S) = NG(S). ■

Proposition 6. We have two normal subgroups:
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• S ⊴ N(S).

Proof. By definition. ■

• N(S) ⊴ Pn.

Proof. Let g ∈ Pn be arbitrary. Then, consider gng−1 for some n ∈ N(S):

(gng−1)s = s(gng−1),

because s either commute with both g and g−1 or anticommute with both, in
which case the two minus signs would cancel out anyways. Therefore,

s−1(gng−1)s = gng−1 =⇒ gng−1 ∈ N(S).

■

• We can also show that S is not a normal subgroup of Pn.

Proof. Pick any g ∈ Pn that anticommute with some s ∈ S, such that gsg−1 =
−s. Since we already know that s ∈ S =⇒ −s /∈ S, so gsg−1 /∈ S, which shows
what we wanted to show. ■

Proposition 7. Since we have shown that S ⊴ N(S) ⊴ Pn, we have two quotient
groups: Pn/N(S) and N(S)/S.

Remark 1. The way how Pauli stabilizer slices its normalizer into cosets, and its nor-
malizer in turn slices the Pauli group into cosets is very useful for quantum error
correction and fault tolerance.

Here, we explain how it works:

• The stabilizer will partition the Hilbert space of n qubits into subspaces, then the
one that is fixed by the stabilizer will be chosen as a codespace.

• All operators in the normalizer will then become logical operators on the codespace.

• The cosets of the normalizer in Pn will group together operators that describe
errors of a similar type (those with the same error syndrome).

• It will be a useful fact to know that Pn/N(S) is abelian (exercise).
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Proposition 8. We know that |Pn| = 4n+1 and that |S| = 2r. Then, we have:

• |N(S)| = 4 · (4n/2r) .

Proof. By definition, normalizer consists of all the operators that commute with
all the generators of the stabilizer. There are

4 · (4n/2)

that commute with the first generator, half of which also commute with the
second generator, a further half of which also commute with the third generator,
and so on. So, considering all r generators, we have

|N(S)| = 4 · (4n/2r)

■

• |Pn/N(S)| = 4n+1

4·(4n/2r) = 2r .

Proof. This and next by Lagrange’s theorem. ■

• |N(S)/S| = 4·(4n/2r)
2r

= 4n−r+1 .

3 Clifford Walks on Stabilizer States

We have so far seen two ways of defining stabilizer states of n qubits. Now, we intro-
duce the third.

We can describe the n-qubit stabilizer states as the states that are reachable from the

|0⟩⊗n state using only the CNOT gate, the H gate, and the phase gate S =

[
1 0
0 i

]
.

Remark 2. Using these three gates tend to let us end up in a discrete state, never
anything in between them.

Proposition 9. Circuits composed of only CNOT, H and S = Pπ/2 are in effect
unitaries that map stabilizer states to stabilizer states.
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Definition 6 (Clifford group). The n-qubit Clifford group Cn is the group generated
by these three unitaries (CNOT, H and S = Pπ/2), and it happens to be exactly the
normalizer of the n-qubit Pauli group inside the group of all (2n × 2n) unitary matrices:

Cn = {U ∈ U(2n) | UPU † ∈ Pn,∀P ∈ Pn} =: NU(2n)(Pn).

Proposition 10. Suppose we have some vector space V stabilized by the group S, and
we apply some unitary operation U . For |ψ⟩ as an arbitrary element of V , and ∀S ∈ S,

U |ψ⟩ = US|ψ⟩ = US(U †U)|ψ⟩ = (USU †)U |ψ⟩,

so U |ψ⟩ is stabilized by USU †.

Proposition 11. From this, we can deduce that the vector space:

UV := {U |ψ⟩ | |ψ⟩ ∈ V }

is stabilized by the group
USU † := {USU † | S ∈ S}.

Proposition 12. Furthermore, if G1, . . . , Gr generate S, then UG1U
†, . . . , UGrU

†

generate USU †, so to compute the change in the stabilizer we need only compute
how it affects the generators of the stabilizer. But, the Clifford group is generated
only by three elements, so we can just work out how these gates act by conjugation on
the Pauli group:

• We already know how H works under conjugation:

HXH = Z,HZH = X,HY H = i(HXH)(HZH) = iZX = −Y.

• We can use a briefer notation that describes the conjugation map of the gate S: X 7→ Y
Y 7→ −X
Z 7→ Z

 .
• ... ad of the gate CNOT: 

1X 7→ 1X
X1 7→ XX
1Y 7→ ZY
Y 1 7→ Y X
1Z 7→ ZZ
Z1 7→ Z1

 .
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From these, we can express them as circuit identities, e.g.,

Example 1. To see how these rules work in practice, here is a simple stabilizer circuit:

,

through which we embark on a Clifford walk between 2-qubit stabilizer states:

|00⟩ H⊗17→ 1√
2
(|0⟩+ |1⟩)|0⟩

CNOT7→ 1√
2
(|00⟩+ |11⟩)

1⊗S7→ 1√
2
(|00⟩+ i|11⟩),

which can be described in terms of stabilizer generators:

.
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Here, the first column corresponds to the first qubit, and the second column to the
second qubit, which is how the gate actions make sense, based on the mapping specified
in proposition 12.

Theorem 2 (Gottesman-Knill Theorem). Gottesman-Knill Theorem states that
stabilizer circuits with only gates from the normalizer of the qubit Pauli group, known
as the Clifford group, can be perfectly simulated in polynomial time on a probabilistic
classical computer. Note that:

• We can also efficiently compute the expectation values of any physical observables
by examining the updated list of stabilizers.

• Computing a list of amplitudes would not be efficient, since there are exponentially
many of them.

Remark 3. Because stabilizer circuits can be classically simulated, they necessarily do
not capture the full power of quantum computation. Specifically, fully universal quan-

tum computation requires at least one non-Clifford gate, such as the T =

[
1 0
0 e−iπ/4

]
gate. With it, we can create circuits that will take us from any initial state, such as
ours in this case |0⟩⊗n, to arbitrarily close to any other state in the n-qubiti Hilbert
space.

Remark 4. Stabilizer circuits, regardless of its limitations, is central to QC, because of
its role in quantum error correction and fault-tolerant computation. Almost
all of the quantum error correcting codes are stabilizer codes, and are presented using
the stabilizer formalism.

https://en.wikipedia.org/wiki/Gottesman%E2%80%93Knill_theorem
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