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Chapter 7: Stabilizers

Recall the Pauli matrices:

1 =

[
1 0
0 1

]
, X =

[
0 1
1 0

]
, Y =

[
0 −i
i 0

]
, Z =

[
1 0
0 −1

]
Also, recall the following properties of Pauli matrices:

• They form a basis in the C2×2 space.

• They all square to the identity (thus they can only have eigenvalues in the set
{±1}]).

• They are all Hermitian and unitary, so they represent both observables and
unitary evolutions.

• They are defined as operators by the commutations relations, without reference
to any particular basis. Particularly, we have the following identities:

X2 = Y 2 = Z2 = 1,

and
XY = iZ, Y Z = iX, ZX = iY,

and they are anti-commutative.

1 Pauli Group

Notice from the recalled identity above, we see that the set of Pauli operators are closed
under multiplications, if we also consider the phase factors. So, with all of them, we
actually acquire a group based off of the set, {1, X, Y, Z}, called a single qubit Pauli
group.
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Definition 1 (single qubit Pauli group, P1). A single qubit Pauli group, P1,
is the group generated by X, Y, Z. Particularly,

P1 = ⟨X, Y, Z⟩ = {±1,±i1,±X,±iX,±Y,±iY,±Z,±iZ}

Definition 2 (n-qubit Pauli group, Pn). The n-qubit Pauli group, Pn is defined
to consist of all n-fold tensor products of Pauli matrices, with possible global phase
factors ±1,±i, i.e.

Pn := {P1 ⊗ . . .⊗ Pn | P1, . . . , Pn ∈ P1}.

Proposition 1 (Properties of Pn). Some basic ones that are easy to realize are:

• |Pn| = 4 · 4n = 4n+1 (by accounting for the possible global phase factors).

Proof. Pn has two trivial subgroups,

Z2 = {±1}, Z4 = {±1,±i},

the quotient group Pn/Z4 is exactly the n-qubit Pauli group with the phases
ignored, which has a size of 4. Then, by Lagrange’s theorem and the fact that
|Z4| = 4, we have

|Pn| = 4× 4n.

■

• Multiplication, like before for tensor products, are defined component-wise on Pn,

(ZXX1) · (XXY Y ) = (ZX)(XX)(XY )(1Y ) = (iY )(1)(iZ)(Y ) = −Y 1ZY.

Proposition 2. Any pair of elements in Pn either commute or anticommute.

Proof. Given P = P1 ⊗ . . . ⊗ Pn and Q = Q1 ⊗ . . . ⊗ Qn. Denote k as the number of
indices j such that

PjQj = −QjPj.

Then, the overall global factor is just (−1)k, which means:

• P and Q commute when k is even.

• P and Q anticommute when k is odd.
■
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Proposition 3. Notice that P 2 = ±1,∀P ∈ Pn, so all elements in Pn are unitary.

Proposition 4. Elements in Pn either Hermitian (with a ±1 overall phase and square
to 1) or anti-Hermitian (with a ±i overall phase and square to −1).

Remark 1. Notice that we are only interested in working with Hermitian elements,
and we refer to these elements as the Pauli operators. That is, an n-qubit Pauli
operator is a Hermitian element of the n-qubit Pauli group Pn.

Proposition 5. Not only do elements of Pn have eigenvalues of ±1, these eigenvalues
must be of the same degeneracy, and the eigenspaces corresponding to each eigenvalue
are of the same dimension, as we can see by taking the trace:

Tr (P1 ⊗ P2 ⊗ . . .⊗ Pn) = (Tr (P1)) · · · (Tr (Pn)) =

{
1 if P1 = P2 = . . . = Pn = 1

0 otherwise

Proposition 6. The n-qubit Pauli group spans the C2n×2n space.

2 Pauli Stabilizers

Recall that, in group theory, a stabilizer Gs is the set of elements of a group G that
leaves s fixed. Formally,

Gs = {g ∈ G : gs = s}.

Example 1. Here are two examples:

• The point of this in the context of QIT is that, given a particular vector in Hilbert
space, we can define it by the list of operators that leave it invariant (in contrast
to defining it by coordinates based on some basis).

• More generally, we can even define a vector subspace by giving a list of operators
that fix this subspaces.

Definition 3 (stabilizers). The set of operators as given in example 1 are known as
stabilizers.

Formally, we say that an operator S stabilizes a (non-zero) state |ψ⟩ if S|ψ⟩ = |ψ⟩.
In such a case, we say that

• |ψ⟩ is a stabilizer state.
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• S stabilizes a subspace V if S stabilizes every state in V , and we call the largest subspace VS
that is stabilized by S the stabilizer subspace.

Proposition 7. The definition is the same as saying that S stabilizes a state |ψ⟩ if
|ψ⟩ is an eigenstate of S with eigenvalue 1.

Specifically, notice that we cannot ignore the global phase factors, here, anymore. Even
though

S|ψ⟩ = −|ψ⟩,

would have |ψ⟩ and −|ψ⟩ describe the same quantum state, we don’t say that S stabilizes
|ψ⟩.

Example 2. Z stabilizes |0⟩, Y stabilizes |i⟩, X stabilizes |+⟩. Similarly, −Z stabilizes
|1⟩, −Y stabilizes | − i⟩, −X stabilizes |−⟩. [Recall that | ± i⟩ = 1√

2
(|0⟩ ± i|1⟩) and

|±⟩ = 1√
2
(|0⟩ ± |1⟩).] Note that |0⟩/|1⟩, | ± i⟩ and |±⟩ denote the intersection of the

three axes with the bloch sphere, as eigenvalues of the Pauli opertaors:

Proposition 8. In the single-qubit Pauli group, 1 stabilizes everything, and −1 stabi-
lizes nothing. More generally, S and −S must generalize different things (recall what
was said in the definition that S|ψ⟩ = −|ψ⟩ does not give that S stabilizes |ψ⟩).

Definition 4 (Stabilizer Group, S). It is easy to see that the set of stabilizes, VS, is
also a group, which we denote as S, called the stabilizer group.

Proof. To show that S is indeed a group, it suffices to show that the inverse and
composition (the binary multiplication) of any S ∈ S must be contained in the set.
But, it is easy to show:
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• (Inverse) If

S|ψ⟩ = |ψ⟩ =⇒ S−1S|ψ⟩ = S−1|ψ⟩ =⇒ |ψ⟩ = S−1|ψ⟩.

• (Composition as multiplication) Suppose S, T ∈ S,

(ST )|ψ⟩ = S (T |ψ⟩) = S|ψ⟩ = |ψ⟩.

• (Identity) Trivially always a stabilizer for any S ∈ S.
■

Proposition 9. It should be clear from the definition how the specific states |0⟩/|1⟩,
|±i⟩, and |±⟩ are related to the Bloch sphere coordinates, thus related to the non-trivial
Pauli operators. In particular, we have:

• G|1⟩ = ⟨Z⟩ = {1, Z}.

• G|0⟩ = ⟨−Z⟩ = {1,−Z}.

• G|+⟩ = ⟨X⟩ = {1, X}.

• etc.

Proposition 10. It should be clear that, given the tensor product of two states, with
stabilizer groups A and B, respectively, then the resulting tensor product state has
stabilizer group given by

A× B.
For example, |1⟩, |+⟩ is stabilized by

⟨Z⟩ × ⟨X⟩ = {11, Z1, 1X,ZX} = ⟨Z1, 1X⟩.

Proposition 11. Generally, say for |0⟩⊗n, it is stabilized by the group generated by
the n elements Z11 . . . 1︸ ︷︷ ︸

n places

, 1Z1 . . . 1︸ ︷︷ ︸
n places

, 11Z . . . 1︸ ︷︷ ︸
n places

, . . .. For brevity of notation, we usually

write such a generating set as an n×n matrix, labeling the signs on the LHS. For some
examples:

•

|0000⟩ ≡

+ Z 1 1 1
+ 1 Z 1 1
+ 1 1 Z 1
+ 1 1 1 Z
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•

|0001⟩ ≡

+ Z 1 1 1
+ 1 Z 1 1
+ 1 1 Z 1
− 1 1 1 Z

•

|0101⟩ ≡

+ Z 1 1 1
− 1 Z 1 1
+ 1 1 Z 1
− 1 1 1 Z

For our purposes, we are only interested in stabilizers that are also elements of
the n-qubit Pauli group Pn, and we shall soon see that this subgroup is an abelian
group.

Example 3 (Describe Bell states by stabilizer groups:). Recall from chapter 5 about
Bell states:

• Φ+ can be represented by ⟨XX,ZZ⟩.

• Ψ+ can be represented by ⟨XX,−ZZ⟩.

• Φ− can be represented by ⟨−XX,ZZ⟩.

• Ψ− can be represented by ⟨−XX,−ZZ⟩.

Example 4. Stabilizer groups can also be used to describe other vector spaces: The
subspace of the 3-qubit state space spanned by |000⟩, |111⟩ is stabilized by

{111, ZZ1, Z1Z, 1ZZ} = ⟨ZZ1, 1ZZ⟩.

Remark 2. It is not necessarily guaranteed that the stabilizer group representation is
more concise than the component-wise representation, or vice versa. but, in general, the
stabilizer group representation is more concise as the number of components increase
as should be sensed with example 4.

2.1 To show that the stabilizer groups that are subgroups of
Pn are abelian

Definition 5 (Alternative definition of an n-qubit Pauli stabilizer group). An n-qubit
Pauli stabilizer group is any subgroup of Pn that is abelian and does not contain −1.
Its elements are called Pauli stabilizers. [To be justified later why this is equivalent.]
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Proof. Recall that all Pauli operators square to the identity, and all pairs of Pauli oper-
ators either commute or anticommute. If we want some Pauli operators to stabilize
anything then they must commute. Otherwise, say S1, S2 are two Pauli operators that
anticommute, then

|ψ⟩ = S1S2|ψ⟩ = −S2S1|ψ⟩ = −|ψ⟩ =⇒ |ψ⟩ = 0.

But, |ψ⟩ ̸= 0 =⇒ contradiction. Furthermore, the Pauli stabilizer group as such (i.e.
abelian) is exactly the abelian subgroup of Pauli stabilizers. Since the moment that
such a subgroup include −1, it must mean that it needs to be a trivial group (because
all other Pauli operators square to 1, and having −1 means that there exists an anti-
commuting element). Therefore, we must have an abelian subgroup of the Pauli group
which doesn’t contain −1, if non-trivial.

On the other hand, if pick any abelian subgroup of Pn that doesn’t contain −1, it
certainly means that it stabilizes some subspace VS.

So, the two definitions are equivalent. ■

The size of any Pauli stabilizer S is |S| = 2r, where r is some positive integer, since
we can always find some choice of generators G1, . . . , Gr, and then any operator S ∈ S
can be written as

S = Gϵ1
1 G

ϵ2
2 . . . G

ϵr
r ,

where ri ∈ {0, 1}. But, given any stabilizer group, we can always express its elements
using many different set of generators.

Definition 6 (presentation). A specific set of choice of r independent generators of
a Pauli stabilizer S of size 2r is called the presentation.

Proposition 12. Here is a way to choose a presentation from the set of elements of
S:

1. We start by picking any non-identity element, so there are 2r − 1 choices.

2. Inductively, we choose the next generator by picking any element that is not in
the subgroup generated by the generators already selected. Thus, there should be
a total of

(2r − 1)(2r − 2)(2r − 22) · · · (2r − 2r−1) possible generating sets of S.
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Notice that these sets are ordered, as it will consider G1, G2, . . . and G2, G1, . . . as
different sets of generators. So, we need to also divide by r!, which gives a total of

(2r − 1)(2r − 2)(2r − 22) · · · (2r − 2r−1)

r!
possible distinct generating sets of S .

Example 5. Φ+ = |00⟩+ |11⟩ has (22−1)(22−2)
2!

= 6
2
= 3 presentations, and they are

⟨XX,ZZ⟩, ⟨−Y Y,XX⟩, ⟨ZZ,−Y Y ⟩.

Now that we know the size of a Pauli stabilizer, but what can we say about the
dimension of the subspace that it stabilizes?

Proposition 13. If |S| = 2r, then the corresponding stabilizer subspace VS has dimen-
sion 2n−r (where n is the number of qubits, i.e. such that S ⊆ Pn).

Proof. To see this, we can look at the projector PS onto VS, since once we have a
projector onto any subspace, we know that the dimension of that subspace is exactly
the trace of the projector. In this case, we have

Tr (PS) =
1

2r
Tr (S1 + S2 + · · ·+ S2r)

1○
=

1

2r
Tr (1) = 2n−r,

where 1○ is because all elements of the stabilizer group (just by inspecting what can
be acquired from X, Y, Z,−1 with phase factors) have trace of 0 other than 1, and
Tr (1⊗n) = 2n.

■

Corollary 1. If r = n, then the stabilized subspace is 1-dimensional, and so we have
stabilizer states.

There is a more geometric way of understanding why powers of 2 keep on turning up
in these calculations:

Remark 3. Given independent Pauli operators, we can think of the state or sub-
space as they repeated bisecting the Hilbert space.

Specifically, let G1, . . . , Gr be a representation of a Pauli stabilizer S. For each op-
erator Gi, half of its eigenvalues are +1 and the other half is −1, so each Gi bisects
2n-dimensional Hilbert space of n qubits into two eigenspaces of equal sizes.
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Such an inductive procedure can be visualized as, at each step, we pass from {G1, G2, . . . , Gi}
to {G1, G2, . . . , Gi+1}: We bisect the subspace into 2i equal parts once more, eventually
ending with the 2n−i−1-dimensional subspace VS . For example, for bisecting a Hilbert
space of 3 qubits into four equal parts, we can visualize it as:

NotesL The stabilizer S = ⟨ZZ1, 1ZZ⟩ bisects the Hilbert space of 3 qubits into four
equal parts, with each part representing a subspace spanned by some representations.
Notice that labelled sign on each edge (respectively mark which eigenspace it is for
ZZ1 and 1ZZ) represents something like a “coordinate” that describes which subspace
we should end up in. For example, ++ denotes the upper left subspace that |000⟩ and
|111⟩ span.

3 Single Stabilizer States

Recall corollary 1, if we are given n independent generators of a stabilizer group S on
a Hilbert space of n qubits, we then specify a 1-dimensional subspace (which means it
is spanned by a single basis vector, namely the stabilizer state).

Recall from proposition 9 that we have also mentioned that a single-qubit stabilizer
state can be fully determined by all possible stabilizers in P1, namely |0⟩ and |1⟩ for
⟨±Z⟩, |±⟩ for ⟨±X⟩, and | ± i⟩ for ⟨±Y ⟩.

We have also talked about some 2-qubit stabilizer states, some entangled (like Bells states),
and some separable (like computational basis states).
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Example 6 (Another two-qubit example that is maximally entangled). Consider |00⟩+
|11⟩. This state is stabilized by ⟨XX,ZZ⟩, and here is how we see it:

1. XX splits the 4-dimensional Hilbert space into 2-dimensional subspaces, corre-
sponding to eigenvalues of ±1. By definition, it stabilizes the one corresponding
to eigenvalue +1 (−1 cannot be a stabilizer), and it is spanned by |00⟩+ |11⟩ and
|01⟩+ |10⟩ (or, Φ+ and Ψ+).

2. ZZ splits, likewise, again corresponding to ±1. It stabilizes the one corresponding
to eigenvalue +1 as well, which is spanned by |00⟩+ |11⟩ and |00⟩ − |11⟩ (or, Φ+

and Φ−).

3. So, the only way to achieve +1 for both XX and ZZ is the state Φ+.

But, in the process described in example 6, this is just one way to bisect the 4-
dimensional Hilbert space, as we have mentioned. Particularly, we can also bisect
by ⟨XX,−Y Y ⟩ or ⟨−Y Y, ZZ⟩.

Proposition 14. So, this brings us to the question: how many n-qubit stabilizer states
do we have? The answer is

2n
n−1∏
k=1

(2n−k + 1)

Proof. We count the number of generating sets with n generators, since this is exactly
the right number of generators to specify a 1-dimensional stabilizer subspace. Then,
we divide the number of presentations for any given stabilizer.

• There are 4n − 1 choices for the first generators G1 (ignoring all signs), since
it can be any n-fold tensor product of the four Pauli matrices, excluding the

identity 1111. Now, continuing on to the second generator G2, we have
4n

2
− 2

(as it must commute with G1 [thus “2
”], and it cannot contain 1111 or G1 [thus

“−2”]). Continue on, when we consider Gi, we have

4

2n−1
− 2n−1.
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So, the total number of possible generating sets is:

2n
n−1∏
i=0

(
4n

2i
− 2i

)
. (1)

• As for the number of presentations that we need to divide, we have already
shown:

n−1∏
i=0

(2n − 2i). (2)

Finally, (1)
(2)

gives us the intended total number of n-qubit stabilizer states. ■

4 Measuring Pauli Stabilizers

We bisect Hilbert spaces by measuring stabilizers.

We first measure any single-qubit observable that squares to the identity. An operator
P that does this must be both Hermitian and unitary, meaning that they can represent
both an observable and a quantum gate.

Notice that this circuit performs a measurement that gives a result of ±1 and leave
the qubit in a post-measurement state (the corresponding eigenvector). Equivalently,
this circuit can be written as:

|0⟩|ψ⟩ 7→ 1√
2
|0⟩|ψ⟩+ 1√

2
|1⟩P |ψ⟩ 7→ |0⟩1

2
(1 + P )|ψ⟩+ |1⟩1

2
(1 − P )|ψ⟩.

The final state of the two qubits indicates that:

• If the auxiliary (top) qubit is found in state |0⟩, then the state |ψ⟩ was projected
onto the +1-eigenspace of P .

• If the auxiliary (top) qubit is found in state |1⟩, then the state |ψ⟩ was projected
onto the −1-eigenspace of P .
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Proposition 15. Stabilizers help us generalize this concept to any n-qubit Pauli operator,
using the stabilizer groups, as it is easy to see that X, Y , and Z observables can be mea-
sured using controlled-X, controlled-Y , and controlled-Z gates, respectively and we can
use the stabilizer groups based on these gates to measure n-qubit Pauli operator:

For example, consider the stabilizer group S = ⟨XX,ZZ⟩, we can measure with the
following circuit:

hen, the registered bit values from the first and second (counting from the top) auxiliary
qubits tell us how we bisect the Hilbert space with XX and ZZ (respectively), recalling
that a bit value of 0 corresponds to +1 Pauli eigenvalue, and a bit value of 1 to the −1
eigenvalue. So, the first measurement can apply one of two projectors to |ψ⟩:

1. 1
2
(1 +XX), in which case the first auxiliary qubit will show 0, corresponding to

the +1-subspace spanned by |00⟩+ |11⟩ and |01⟩+ |10⟩.

2. 1
2
(1 −XX), in which case the first auxiliary qubit will show 1, corresponding to

the −1-subspace spanned by |00⟩ − |11⟩ and |01⟩ − |10⟩.

Also, the second measurement can further apply one of two projectors to |ψ⟩:

1. 1
2
(1 + ZZ), in which case the second auxiliary qubit will show 0, corresponding

to the +1-subspace spanned by |00⟩+ |11⟩ and |00⟩ − |11⟩.
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2. 1
2
(1 − ZZ), in which case the second auxiliary qubit will show 1, corresponding

to the −1-subspace spanned by |01⟩+ |10⟩ and |01⟩ − |10⟩.

Notation 1 (Pauli Notation). Notice how the bisection is based on the ±1 values of the
XX and Y Y eigenvalues, respectively. So, for notation, we can denote ⟨±XX,±ZZ⟩
by (±1,±1).

Remark 4. Even though we have no control over the final state we get, we do know
which post-measurement state we have generated, so we can use the circuit to prepare
a desired state by applying an appropriate unitary operation to the final state.

Remark 5. This is also not the only way of constructing projective measurements of
Pauli observables.
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